
Binary Search Trees:
(Optional) Splay Tree

Analysis

Daniel Kane
Department of Computer Science and Engineering

University of California, San Diego

Data Structures Fundamentals
Algorithms and Data Structures

https://goo.gl/tLiWFc
https://goo.gl/EEJDQX


Learning Objectives

Prove the amortized runtime of a splay
tree.
Know other bounds on splay tree
runtime.



Last Time

Analyzed splay trees given
Theorem
The amortized cost of doing O(D) work and
then splaying a node of depth D is O(log(n))
where n is the total number of nodes.

Today we prove it.



Last Time

Analyzed splay trees given
Theorem
The amortized cost of doing O(D) work and
then splaying a node of depth D is O(log(n))
where n is the total number of nodes.
Today we prove it.



Amortized Analysis

Need to amortize. Pick correct potential
function.



Rank

R(N) = log2(Size of subtree of N).
Recall the size of the subtree of N is the
total number of descendants of N.
Potential function

Φ =
∑

N
R(N).



Zig Analysis

∆Φ = R′(N) + R′(P)− R(N)− R(P)
= R′(P)− R(N)
≤ R′(N)− R(N).



Zig-Zig Analysis

∆Φ = R′(N) + R′(P) + R′(Q)
− R(N)− R(P)− R(Q)

= (R′(P)− R(P)) + (R′(Q)− R(N))
≤ 3(R′(N)− R(N))− 2



Why?
R(Q) = R′(N) bigger than any other
term.
Size(N) + Size′(Q) = Size(Q)− 1.
So R(N) + R′(Q) ≤ 2R′(N)− 2.



Zig-Zag Analysis

∆Φ = R′(N) + R′(P) + R′(Q)
− R(N)− R(P)− R(Q)

= (R′(P)− R(P)) + (R′(Q)− R(N))
≤ 2(R′(N)− R(N))− 2



Total Change

∆Φ ≤ 3(Rk(N)− Rk−1(N))− 2
+ 3(Rk−1(N)− Rk−2(N))− 2 + · · ·

= 3(R′(N)− R(N))− Depth(N)
= O(log(n))− Work



Other Bounds

Splay trees have many other wonderful
properties.



Weighted Nodes

If you assign weights so that∑
N

wt(N) = 1,

accessing N costs amortized
O(log(1/wt(N))) time.

So if you only access
high weight nodes, it’s much quicker.



Weighted Nodes

If you assign weights so that∑
N

wt(N) = 1,

accessing N costs amortized
O(log(1/wt(N))) time. So if you only access
high weight nodes, it’s much quicker.



Dynamic Finger

Amortized cost of accessing node
O(log(D + 1)) where D is distance (in terms
of the ordering) between last access and
current access.



Working Set Bound

Amortized cost of accessing N is
O(log(t + 1)) where t is time since N was
last accessed.



Dynamic Optimality Conjecture

It is conjectured that for any sequence of
binary search tree operations that a splay
tree does at most a constant factor more
work than the best dynamic search tree for
that sequence.



Conclusion
Splay Trees

Require O(log(n)) amortized time per
operation.
Can be much better than this if queries
have extra structure (call some nodes
more frequently, calls nearby nodes,
etc.).


